Prospective Techniques for Magnetic Resonance Imaging—Guided Robot-Assisted Stereotactic Neurosurgery

Ziyan Guo¹, Martin Chun-Wing Leong¹, Hao Su², Ka-Wai Kwok¹, Danny Tat-Ming Chan³ and Wai-Sang Poon³

¹The University of Hong Kong, Hong Kong
²City University of New York, New York City, NY, United States
³The Chinese University of Hong Kong, Hong Kong

ABSTRACT

Stereotactic neurosurgery involves a technique that can locate the brain targets using an external coordinate system. With the advancements of magnetic resonance imaging (MRI), numerous studies on frameless stereotaxy and MRI-guided/verified technique have been reported to improve the workflow and surgical outcomes. Intraoperative (intraop) MRI guidance in frameless techniques is an appealing method which could simplify workflow by reducing the coregistration errors in different imaging modalities and monitoring the surgical progress. Manually operated platforms thus emerge for MRI-guided frameless procedures. However, these procedures could still be complicated and time-consuming due to their intensive manual operation. To further simplify the procedure and enhance accuracy, robotics has been introduced. In this chapter, we review the state-of-the-art intraop MRI-guided robotic platforms for stereotactic neurosurgery. To improve surgical workflow and achieve greater clinical penetration, three key enabling techniques are discussed with emphasis on their current status, limitations, and future trends.
34.1 Background

Stereotactic neurosurgery requires locating the targets of interest within the brain using an external coordinate system [1]. Stereotactic approaches have been adopted in a wide variety of procedures, such as biopsy, ablation, catheter placement, stereo electroencephalography, and deep brain stimulation (DBS) [2–4]. Three key stages are incorporated in current stereotaxy workflow: (1) preoperative (preop) planning which provides a roadmap to the interventionists prior to the operation; (2) immediate planning which involves registering the three-dimensional (3D) coordinates of a stereotactic frame onto the preop image; and (3) intraoperative (intraop) refinement which involves setting up the system for intervention.

Preop planning involves high-resolution tomography, such as computed tomography (CT) and magnetic resonance (MR) imaging (MRI). These imaging modalities offer crucial image accuracy for precise target/lesion localization. In particular, MRI (e.g., gadolinium-enhanced MR images) is advantageous to visualize deep brain structures for the treatment of functional disorders. Special MRI sequences can also be used to pinpoint the target/lesion location on the 3D roadmap. After locating the required region-of-interests, **immediate planning** involves the realignment of the frame through image fusion and registration. Such realignment is crucial to obtain a consistent coordinate system among the frame and the preop roadmap. Finally, **intraop refinement** involves essential procedures such as the creation of a burr hole for dural puncture. For DBS, microelectrode recording (MER) and macrostimulation are also involved in this stage for physiological validation.

Instrument manipulation for stereotactic neurosurgery remained a major challenge, despite the standard workflow that has been established for multiple decades. Satisfying the supreme demand of precision while minimizing invasiveness is the key to successful operation. Imprecise positioning of instruments would result in deviated trajectory and targeting error, which would significantly increase the risk of hemorrhage. Although image fusion (registration) has been performed at the immediate planning stage, it cannot compensate for the dynamically changing condition during surgery. Particularly, the unavoidable brain shift/deformation after craniotomy can affect the position of the critical/target regions on the brain. Many procedures can also cause brain shift, such as instrument manipulation, anesthesia operation, change in intracranial pressure, postural/gravitational forces, tissue removal and effect of pharmaceuticals. Given the multiplexed causes of brain shift, solely using the preop images as a roadmap is undesirable. Continuous updates are therefore required. The incorporation of advanced real-time visualization is crucial for precise instrument manipulation and brain shift compensation.

The advances in intraop imaging techniques, particularly intraop MRI, simplify the perplexing workflow for stereotactic neurosurgeries. MRI possesses several advantages over other modalities (e.g., CT or ultrasound) thanks to its high sensitivity for intracranial physiological/pathological changes and its capability of visualizing soft tissues in high contrast without radiation. To date, MR images can be acquired swiftly through advanced radiofrequency excitation sequences (e.g., fast imaging with low angle shot sequence can achieve a temporal resolution of 20–30 ms [5]). These imaging techniques, which permit real-time guidance on soft-tissue deformation, can be supported in many current MRI facilities. With increasing real-time MRI availability, there is sufficient support for MRI-guided robots to find their way into more complex surgical procedures. These MRI robots are capable of delivering more precise treatment through accurate image guidance. Device implantation and tissue ablation are timely examples. In this review, we provide a discussion regarding the state-of-the-art apparatus and MR safe/conditional robots for stereotactic neurosurgery, as well as the key enabling techniques, with emphasis on their current status, limitations, and future trends.

34.2 Clinical motivations for magnetic resonance imaging—guided robotic stereotaxy

Computer-aided navigation systems have enabled intraop guidance based on preop images since the 1990s (Fig. 34.1) [6]. The advancement of intraop navigation techniques enables frameless stereotaxy, which utilizes fiducial landmarks to replace the rigid frame for registration and transformation of the frame-of-reference. With the fiducial markers/contours providing real-time positional information of the imaged brain and the surgical instrument, the accuracy [7–10], diagnostic yield, morbidity, and mortality rate [11] of frameless stereotaxy are currently comparable to its frame-based counterpart. In addition, frameless stereotactic neurosurgery is also associated with reduced anesthetic time and fewer complications [12].

Despite frameless instrument guidance being achieved, intraop continual visualization of the surgical process remains a challenge [13–15]. Taking the conventional DBS as an example, it utilizes MER and fluoroscopy/CT images concurrently to confirm the placement location of the electrodes. The patient, however, is required to stay awake
throughout the surgery under local anesthesia for the interventionists to assess the corresponding symptoms [16]. Coregistering fluoroscopy images with the preop roadmap is susceptible to registration errors. In this light, intraop MRI is the preferred imaging modality thanks to its sensitivity to intracranial pathology with high-contrast soft-tissue images. The resultant images in 3D can provide the surgical navigation system with clear visualization, allowing precise guidance of the instrument to the target tissue in real-time. By incorporating MRI guidance in the frameless stereotaxy technique, the multiplexed workflow of DBS can be further streamlined by conducting general anesthesia and verification in situ with MR images [17]. The patient need not stay awake in response to the interventionists. The instrumental position can also be pinpointed throughout the surgical process [18].

34.3 Significant platforms for magnetic resonance imaging–guided stereotactic neurosurgery

Manually operated stereotactic platforms have been developed for MRI-guided neurosurgeries, such as the NexFrame (Medtronic, Inc., United States) and the SmartFrame (ClearPoint, MRI Interventions, Inc., United States) [24] systems. Notably, the ClearPoint system (Fig. 34.2A) has been deployed for several therapeutic approaches including electrode placement [25], focal ablation [26] and direct drug delivery [27]. These MR-safe/conditional platforms have been validated through a number of clinical trials [16,28,29]. Particularly, there was a clinical study on frameless DBS approaches involving 27 patients with movement disorders [17]. This study clearly indicated that frameless DBS under MRI guidance can reduce procedural time without sacrificing surgical accuracy. However, patients have to be moved in and out of the scanner’s isocenter for imaging updates and manual instrument adjustment. Such a requirement not only increases the operation time, but also demands advanced peripherals such as a compatible anesthesia system. These challenges have directed increasing attention at developing intraop manipulators and further translating robotics technology into neurosurgery. Robots can be superior over humans in certain areas, especially for intensive, tedious tasks that demand high precision. Having a compact robot capable of operating inside the confined MRI bore also mitigates the disturbing requirement of frequent patient transfer to/from the isocenter. The increasing demands of MRI-guided robotic platforms for stereotactic neurosurgeries can also be inferred by the rising number of recent reports [30–32]. The clinical benefits of such platforms are extensively discussed.
Fig. 34.2B illustrates the early models of MR conditional robots such as those presented in Masamune et al. [33] and Chinzei et al. [34]. These early robot prototypes have a large footprint in the operating room, and are mostly based on low-field, open-bored interventional MRI (iMRI) scanners (e.g., Signa SP 0.5T, GE Medical Systems, United States). The robot reported in Chinzei et al. [34,35] is the first robotic platform integrated with an optically linked frameless stereotactic system. These early robot models have a few key disadvantages. Images obtained from specialized iMRI scanners often have impaired image quality due to the scanners having a low base magnetic field. Any metal-containing robot components can further degrade the already suboptimal image quality. Furthermore, most of these early robotic systems lack tele-operating capabilities, of which any manual influence on the system may be hindered by the confined iMRI workspace.

Fig. 34.2C illustrates NeuroArm/SYMBIS (Deerfield Imaging, United States), which is an MR-compatible robotic system for tele-operative microsurgery and stereotactic brain biopsy [36,37]. It consists of two 7 + 1 degrees of freedom (DoFs) manipulators and is able to operate with a maximum load of 0.5 kg. It also features a moderate force output and movement speed of 10 N and 0.5—5 mm/s, respectively [38]. These manipulators are semiactively controlled by a remote workstation integrated with hand tremor filter and movement scaling. Stereotaxy can be conducted within the magnetic bore using a single MRI-compatible robotic arm. This robot arm is fabricated with MR-compatible materials such as titanium, polyetheretherketone, and polyoxymethylene [21]. To provide a constant frame-of-reference for effective robot control, this MR-compatible robot arm is directly attached to the magnet bore.

Fig. 34.2D shows the Monteris stereotactic platform which is capable of tele-operating a two-DoF robotic device for laser ablation. The NeuroBlade laser probe is oriented by a separate, disposable MRI-compatible stereotactic frame (AXiiS stereotactic miniframe) that is also visible on the MR images. This stereotactic frame consists of three translatable legs and a ball socket for the instrument to engage the treatment target from any angle. The laser fiber for ablation is oriented and driven by piezoelectric motors. Utilizing real-time MRI and thermometry data, the surgeon can monitor and update the probe position and ablation profile accordingly [39]. However, if multiple ablations are required, the patient may be required to be transferred back to the operation theater for probe removal, frame realignment, and possibly new craniotomy.

Finally, Fig. 34.2E illustrates a recent research prototype developed by Fischer et al. [23,40], which is designed specifically to place DBS leads under the guidance of MRI. The system features six DoFs driven by piezoelectric motors, which mimics the functionality and kinematic structure of a conventional stereotactic frame (e.g., Leksell frame). It has been demonstrated that the simultaneous robotic manipulation and imaging would not affect the imaging usability for visualization and navigation. The robot could reach targets in a static phantom model with accuracy 1.37 ± 0.06 mm in tip position and 0.79 ± 0.41 degree in insertion angle [40].
34.4 Key enabling technologies for magnetic resonance imaging—guided robotic systems

The goal of MRI-guided stereotactic neurosurgical platforms is to achieve higher accuracy, effectiveness, and optimized surgical workflow. Despite there being many developed MRI-guided robotic systems (as listed in Table 34.1), only a few of them are available on the market; achieving widespread clinical use is still an ambitious objective. Furthermore, adopting MRI-guided robotic systems also introduces additional costs. Particularly, the expenses of occupying the MRI suite for a prolonged time can be substantial, let aside the expensive MRI-compatible instruments [12]. These associated costs can be detrimental to the application of MRI-compatible robotics in health care [58]. Streamlining the surgical workflow may be a way out to enable widespread application. Here we propose three key enabling technologies for high-performance intraop MRI-guided robotic platforms, which would simplify the workflow (as illustrated in Fig. 34.3) and potentially reduce the surgical costs.

<table>
<thead>
<tr>
<th>Emerging platforms</th>
<th>Degrees of freedom</th>
<th>Number of end effectors</th>
<th>Actuator (e)</th>
<th>Accuracy</th>
<th>HMI</th>
<th>Features</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuroArm/SYMBIS (Deerfield Imaging, United States)</td>
<td>7 + 1</td>
<td>2</td>
<td>E</td>
<td>Submillimeter</td>
<td>√</td>
<td>Tele-operated microsurgery and stereotaxy Only one manipulator can fit into the magnet bore Haptic feedback 3D image reconstruction for navigation Phase: FDA approved, commercial</td>
<td>Sutherland et al. [41]; Louw et al. [42]; Motkoski et al. [21]</td>
</tr>
<tr>
<td>NeuroBlate (Monteris Medical, Inc., United States)</td>
<td>2</td>
<td>1</td>
<td>E</td>
<td>1.57 ± 0.21 mm</td>
<td>√</td>
<td>Laser ablation Patient under general anesthesia Continuous MR thermography acquisition Phase: FDA approved, commercial</td>
<td>Mohammadi et al., 2014 [44]; Manijila et al., 2016 [43]</td>
</tr>
<tr>
<td>Pneumatic MRI-compatible needle driver (Vanderbilt University, United States)</td>
<td>2</td>
<td>1</td>
<td>P</td>
<td>1.11 mm</td>
<td>–</td>
<td>Transforamenal ablation; Precurved concentric tube 3T closed-bore MRI scanner Phase: clinical trial</td>
<td>Comber et al. [45,46]</td>
</tr>
<tr>
<td>MRI-guided surgical manipulator (AIST-MITI, Japan and BWH, Harvard University, United States)</td>
<td>5</td>
<td>1</td>
<td>E</td>
<td>0.17 mm/0.17 degree</td>
<td>–</td>
<td>Navigation and axisymmetric tool placement 0.5T open MRI scanner Pointing device only; Phase: in vivo test with a swine brain</td>
<td>Chinzei et al. [47]; Koseki et al. [48]</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Emerging platforms</th>
<th>Degrees of freedom</th>
<th>Number of end effectors</th>
<th>Actuator</th>
<th>Accuracy</th>
<th>HMI</th>
<th>Features</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI-compatible stereotactic neurosurgery robot (Worcester Polytechnic Institute, United States)</td>
<td>7</td>
<td>1</td>
<td>E</td>
<td>1.37 ± 0.06 mm</td>
<td>–</td>
<td>Needle-based neural interventions Mounted at the MRI table SNR reduction in imaging less than 10.3% Phase: research prototype</td>
<td>Li et al. [23]; Nycz et al. [40]</td>
</tr>
<tr>
<td>Mesoscale neurosurgery robot (Georgia Institute of Technology, United States)</td>
<td>b</td>
<td>1</td>
<td>c</td>
<td>About 1 mm</td>
<td>–</td>
<td>Tumor resection, hemorrhage evacuation Skull-mounted Phase: research prototype</td>
<td>Ho et al. [49]; Kim et al. [50]; Cheng et al. [51]</td>
</tr>
<tr>
<td>MR safe bilateral stereotactic robot (The University of Hong Kong, Hong Kong)</td>
<td>8</td>
<td>2</td>
<td>H</td>
<td>1.73 ± 0.75 mm</td>
<td>–</td>
<td>Bilateral stereotactic neurosurgery Skull-mounted MR safe/induce minimal imaging interference Phase: research prototype</td>
<td>Guo et al. [52]</td>
</tr>
<tr>
<td>Multi-imager-compatible needle-guide robot (Johns Hopkins University, United States)</td>
<td>3</td>
<td>1</td>
<td>P</td>
<td>1.55 ± 0.81 mm</td>
<td>–</td>
<td>General needle-based interventions Table-mounted iMRIS Phase: research prototype</td>
<td>Jun et al. [53]</td>
</tr>
<tr>
<td>MRI-compatible needle insertion manipulator (University of Tokyo, Japan)</td>
<td>6</td>
<td>1</td>
<td>E</td>
<td>3.0 mm</td>
<td>–</td>
<td>Needle placement 0.5T MRI scanner Phase: research prototype</td>
<td>Masamune et al. [33]; Miyata et al. [54]</td>
</tr>
<tr>
<td>Endoscope manipulator (AIST, Japan)</td>
<td>4</td>
<td>1</td>
<td>E</td>
<td>About 0.12 mm/0.04 degree</td>
<td>–</td>
<td>Endoscope manipulation for transnasal neurosurgery Vertical field open MRI Large imaging noise caused by ultrasonic motors Phase: research prototype</td>
<td>Koseki et al. [55]</td>
</tr>
<tr>
<td>Tele-robotic system for MRI-guided neurosurgery (California State University, United States and University of Toronto, Canada)</td>
<td>7</td>
<td>1</td>
<td>P/H</td>
<td>–</td>
<td>✓</td>
<td>Brain biopsy 1.5T MRI scanner Mounted at the surgical table Phase: research prototype</td>
<td>Raoufi et al. [56]</td>
</tr>
</tbody>
</table>

(Continued)
34.4.1 Nonrigid image registration

Mismatch between the preop and intraop images can lead to much confusion in the process of target localization. Such a mismatch can arise from various sources: (1) differences in patient positioning during scanning and surgery (e.g., in supine/prone); (2) lead time between scanning and surgery; (3) number of sampling fiducial points for registration; and (4) intrinsic error in image fusion. Image registration mitigates such misalignments, thus enabling precise localization of the preoperatively segmented critical/target regions on the intraop images. With the target location pinpointed on the rapidly acquired intraop image, the surgical plan can be established/updated accordingly. To date, many commercial navigation systems only employ rigid registration to realign the both sets of images. However, it cannot compensate for any image discrepancy resulting from the actual brain deformation and the MR image distortion. For example, it cannot tackle the severe misalignment (~10–30 mm [59]) caused by brain shift after craniotomy (Fig. 34.4). This large-scale
brain deformation inevitably makes the surgical plan inconsistent with the actual anatomy during the procedure. Nonrigid image registration has been proposed to mitigate such misalignment. In particular, the biomechanical finite-element-based registration schemes are specifically developed to estimate and predict the extension of any brain shift of different regions. The relative stiffness model of intracranial structures has to be constructed so as to deduce deformation caused by gravity.

Apart from nonlinear image discrepancy due to the tissue deformation, spatial distortion of MR images would also hamper the accuracy in MRI-guided stereotactic surgery. The cause of MR distortion is multiform and incalculable. Let alone base (static) field inhomogeneity, chemical shift, and susceptibility artifacts, the nonlinearity of the B1 gradient field contributes most to such distortion. It has been reported that the spatial distortions can be as much as 25 mm at the perimeter of an uncorrected 1.5T MR image; the error would still remain within the 1% range (typically ~4 mm) even after standard gradient calibration using a grid phantom. This error is significant concerning the supreme accuracy requirement in stereotaxy. Worse still, the distortion may even be aggravated due to the higher magnetic field inhomogeneity that presents in 3T MRI scanners. The combined effect of these variables often results in very complex and nondeterministic image distortion, particularly affecting the images obtained by advanced excitation sequences. For example, the echo-planar imaging sequence used in the acquisition of diffusion-weighted images is vulnerable to susceptibility-induced distortions, resulting in heavy distortion at the tissue margins where the magnetic susceptibility is rapidly changing in 3D space.

Considering such gradient field nonlinearity, gradient-based excitation sequences are set back despite its widespread usefulness. Nonrigid registration schemes can correct the distortion in gradient-based image while retaining any useful anatomical information. This can be achieved by registering the distorted image to a standard MR image (e.g., T2 turbo spin echo images that exhibit little image distortion) obtained at the same imaging instance. As a result, the image correspondence in 3D obtained by nonrigid registration can reliably restore any misalignment caused by image distortion. Recent research demonstrated that significant (>10%) accuracy improvement has been archived by resolving such a misalignment. However, complex computation involved in nonrigid registration schemes impedes its efficacy to be used in the intraop scenario. This motivates the development of high-performance image registration schemes using scalable computation architectures such as graphical processing units, field-programmable gate arrays, or computation clusters. Recent works have demonstrated substantial computation speed up, in which the registration process can be accomplished within seconds, even with a large image dataset in 3D (~27 M voxels) being used.

FIGURE 34.4 (Upper row) Brain deformation before and after the craniotomy; (lower row) geometric distortion in diffusion images.
34.4.2 Magnetic resonance-based tracking

Real-time tracking enables in situ positional feedback of stereotactic instruments inside the MRI scanner bore. Not only does it act as the feedback data to close the control loop of a robot, it also allows the operator to visualize the instrument position/configuration with respect to the brain roadmap. A sufficient number of tracked markers are required to pinpoint the instrument in the image coordinates [72]. However, real-time positional tracking of the instrument inside the MRI scanner is challenging for several reasons: (1) conventional instruments can either be invisible or create serious susceptibility artifacts on MR images; (2) restricted space of the scanner bore and complicated electromagnetic (EM)-shielding limit the use of external tracking devices, for example, stereo-optical cameras; and (3) image reconstruction is time-consuming (e.g., 9.440 seconds required for acquisition of a slice of T2-weighted MR image with field of volume of 220 × 220 mm [73]). Only a few 2D images can be obtained, therefore it is hard to localize multiple marker points on an image domain in relatively large 3D space.

Passive tracking (Fig. 34.5, upper row) is the most commonly used method, in which passive markers are incorporated with the stereotactic instruments and directly visible in MR images by changing the contrast. No additional hardware is necessary. The markers are either filled with paramagnetic agents (e.g., gadolinium compounds) that can produce positive MR image contrast, or diamagnetic materials (e.g., ceramic) that generates negative contrast. The shape of these markers can be customized into spheres, tubes, or other desired structures for the ease of recognition on the images. Passive tracking is simple and safe, and can be performed under various MR field strengths without inducing any heat. However, passive markers may be invalid when the markers are in close proximity, or out of the imaging slice [74]. Thus, the configuration of the marker system needs to be specially designed for ready identification [75]. In addition, the localization of passive markers is challenging to perform automatically and also in real time. The visualization of passive markers relies on 2D image reconstruction, which is time-consuming and may not be reliable as the MR images are intrinsically distorted [76].

To tackle these challenges, much research attention has been recently given to the MR-based active tracking techniques (Fig. 34.5, lower row). Active markers are small coils serving as antennas individually connected with the MRI scanner receivers, and actively respond to the MR gradient field along three principal directions. Without the need for
image reconstruction, the markers can be rapidly localized using a 1D projection technique. This localization is automatic, since the marker can be independently identified through its own receiving channel. The obtained coordinates may then be immediately used for adjustment of the further scanning plane. Specific MR sequences are designed to incorporate and interleave both tracking and imaging. Delicate heat control is also needed because of the resonating RF waves and the storage of electrical energy caused by the conductive structure. Therefore, a semi-active tracking system is also preferable, in which there is no electrical wire connected between the coil marker and the MRI scanner. It resolves the potential problem of heat generated by the wires. This marker unit acts as an RF receiver to pick up the MR gradient signal, as well as an inductor to resonate with the signal transmitted to the MRI scanner receiver. The resonance frequency of this coil marker needs fine tuning to adapt with the scanners of different field strengths (i.e., 63.8 and 123.5 MHz, respectively, for 1.5 and 3T MRI scanners), while the 1.5T scanner is more popular in clinical practice and 3T can provide images with lower noise and a faster acquisition time.

We can foresee that such MR-based tracking coils could be implemented in stereotactic neurosurgery to realize real-time instrument tracking. Promising results have been reported in an MR-active tracking system for intraop MRI-guided brachytherapy. Three active microcoil markers are mounted on a 1.6 mm brachytherapy stylet. Both the tracking and imaging are in the same coordinate system, the stylet configuration can be virtually augmented on the MR images in situ. High-resolution stylet localization at high sampling rate (40 Hz) and low-latency (<1.5 ms) could be achieved.

34.4.3 Magnetic resonance imaging–compatible actuation

The actuator is another key component of a robot. Its performance also determines the surgical safety and accuracy, in particular for instrument manipulation in stereotactic surgery that involves precise coordination of three DoFs at least and demands an average accuracy of 2–3 mm. Conventional high-performance actuators mostly consist of magnets and are driven by EM power. However, the use of ferromagnetic materials is forbidden under a strong magnetic field. This poses a strong incentive to develop motors that are safe and compatible with the MRI environment. Piezoelectric motors actuated by high-frequency electric current have been extensively applied for iMRI applications. Such motors are usually small in size (e.g., 40.5×25.7×12.7 mm³, Nanomotion motor as shown in Fig. 34.6, upper row), and can provide fine movement at the nanoscale. However, the motion range and speed of these motors are limited and insufficient for some long-stroke DoFs (e.g., inserting an ablation catheter for tumors located in the deep brain area) without

FIGURE 34.6 Exemplary MRI-compatible robotic systems driven by different motors. (Upper row) NeuroArm manipulator (in red frame) driven by ultrasonic piezoelectric motors (in yellow frame). The manipulator is mounted onto an extension board for stereotaxy. Careful EM-shielding is required for the motors and controller box placed inside the MRI room to ensure safety and minimal interference to the imaging. System setup diagram of the robot integrated with ultrasonic motors is shown on the right. (Lower row) Prostate robot (in red frame) driven by pneumatic stepper motors (in yellow frame). The controller box can be placed in the control room and connected with the motors via air hoses. System setup diagram of the robot integrated with pneumatic motors is shown on the right. EM, Electromagnetic; MRI, magnetic resonance imaging.
additional mechanisms. EM interference is inevitably induced by the high-frequency electrical signal. Tailormade EM shielding of the motor and its electronic drivers may degrade the motor compactness [88,90]. Nevertheless, the imaging quality can be more or less deteriorated by the presence of electric current while the motors operate inside the scanner bore during the image acquisition, thus affecting the visualization of small targets (e.g., DBS targets with diameters of approximately 4–12 mm).

In this light, intrinsically MR-safe motors driven by other energy sources, for example, pressurized air/water flow, are preferable. Minimal EM interference is generated by this fluid-driven actuation [91–94]. Fig. 34.6 (lower row) shows a general setup of a pneumatically actuated MRI robot. Long transmission air pipes (e.g., 10 m) connect the robot and its control box, which are placed in MRI and control rooms separately. Pressurized air at 0.2–0.4 MPa can be supplied from the medical air system commonly available in hospital rooms. However, the high-frequency air pulses may generate unfavorable noises and vibration in the operating room. The compressibility of air results in limited torque/force output and low-stiffness transmission, making the positional accuracy hard to reach the millimeter level and satisfy the requirement in stereotaxy [95]. In contrast, incompressible liquid (e.g., water, oil) in hydraulic motors offers relatively accurate, responsive, and steady mechanical transmission. They can typically render large output power. A master–slave design is usually adopted in hydraulic systems. The master unit is placed in the control room, which is driven by electric motors; the slave unit works near or inside the MRI scanner bore, which is made of MR-safe materials and its power is transmitted from the master unit via long hydraulic tubes. In this hydraulic system, discreet sealing for all the connectors is required to prevent liquid leakage. This may pose difficulties in setting up the robot, for example, when disconnecting and reconnecting the hydraulic tubes through the waveguide (with diameter of ~ 100 mm) between the MRI room and the control room.

34.5 Conclusion

In this review, we have given an overview of the emerging robotic platforms for MRI-guided stereotactic neurosurgery. These neurosurgical systems allow for enhanced dexterity, stability, and accuracy beyond manual operation. However, few of them are in wide application. This may be due to the lack of optimized surgical workflow and outcomes to compensate for the high cost of using MRI and MRI-compatible instruments/robot. To tackle this challenge, three key enabling technologies have been proposed in this chapter, namely nonrigid image registration, MR-based positional tracking, and MR-safe actuation. All these technological developments will eventually serve to exploit the information and augment the surgeon’s capabilities, by providing enhanced visualization and manipulation. Continued efforts to incorporate these techniques and evaluate the clinical benefits would be of great value.

References

