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Experiment-free exoskeleton assistance via 
learning in simulation

Shuzhen Luo1,2, Menghan Jiang1, Sainan Zhang1, Junxi Zhu1, Shuangyue Yu1,  
Israel Dominguez Silva1, Tian Wang1, Elliott Rouse3, Bolei Zhou4, Hyunwoo Yuk5, 
Xianlian Zhou6 & Hao Su1,7 ✉

Exoskeletons have enormous potential to improve human locomotive performance1–3. 
However, their development and broad dissemination are limited by the requirement 
for lengthy human tests and handcrafted control laws2. Here we show an experiment- 
free method to learn a versatile control policy in simulation. Our learning-in-simulation 
framework leverages dynamics-aware musculoskeletal and exoskeleton models and 
data-driven reinforcement learning to bridge the gap between simulation and reality 
without human experiments. The learned controller is deployed on a custom hip 
exoskeleton that automatically generates assistance across different activities with 
reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair 
climbing, respectively. Our framework may offer a generalizable and scalable strategy 
for the rapid development and widespread adoption of a variety of assistive robots for 
both able-bodied and mobility-impaired individuals.

Humans possess efficient and versatile mobility that stems from evolu-
tion, growth and learning4. Precise control of musculoskeletal systems 
produces natural transitions among various locomotion activities. 
Exoskeletons demonstrated the capability to improve human per-
formance during walking for able-bodied individuals1,2 and to restore 
mobility for people with disabilities3. However, their control strategies 
typically use either a predefined assistance profile or hours-long human 
tests for each participant, even when only developing strategies for 
walking1 (Fig. 1a). Consequently, there is a formidable cost when the 
controller is applied to another participant or another activity. Moreo-
ver, handcrafted control laws for each activity are often required for 
several activities. This further complicates the controller design as the 
number of activities increases, making it impractical for the widespread 
adoption of wearable robots2.

One challenge which impedes controller development is the substan-
tial labour and time required for human subjects. Laboratory-based 
testbeds5–7 were developed to apply a wide range of assistance profiles 
to characterize the human response to robotic assistance. Human-in- 
the-loop optimization8 and myoelectric control9 optimized assistive 
torque to minimize metabolic rate, a key metric of human performance. 
However, this process may require more than 30 min per participant 
during walking8,9. A data-driven method2 enabled optimization for out-
door walking in 30 min for each participant. Although these methods 
have shown remarkable reductions in energy expenditure, they still 
require substantial human tests. One recent control method10 took 
less than 10 min to tune control parameters for tracking a predefined 
hip joint position trajectory, without reductions of metabolic rate. 
Simulation-based learning is a potential solution; however, no simula-
tion has demonstrated their benefits in experiments with a physical 

robot because they either do not incorporate controller design11,12 or 
do not consider human–robot interaction13,14 in the simulation. How 
to develop a controller to enhance human performance purely from 
simulation remains an open question.

A second challenge of controller development pertains to accom-
modating the distinct biomechanics of multigait human locomotion. 
State-of-the-art algorithms use two levels of discrete control which 
first classify different locomotion activities and then discretize the gait 
cycle into several phases. Different control laws are applied for each 
segmented gait phase15,16 and each control law requires manual tuning 
of control parameters. Several control methods were proposed which 
directly generate the assistance profile for the full gait cycle using the 
estimated joint moment14,17 or a predefined trajectory18. However, these 
methods are tailored for discrete locomotion activities and require 
human training data for each activity. In addition, assistive torque pro-
duced by these methods can be uncomfortable because they are unable 
to handle transitions among locomotion activities. Reinforcement 
learning enables smooth control owing to its adaptability to environ-
ments and situations. However, it is primarily studied for robot con-
trol19–21 and does not involve humans, which poses unique challenges 
for controller design. A previous study to control a human–prosthesis 
system with reinforcement learning was limited to position tracking of 
a predefined gait kinematics trajectory22. Our previous work imposed 
predefined kinematic trajectories to drive the steady-state walking of 
a human in simulation23,24, in which the virtual human model simulated 
a person with quadriplegia and had no volitional interaction with the 
robot. Therefore, a compelling need arises for a method capable of 
learning a versatile controller to assist multimodal locomotion without 
relying on human tests or handcrafted rules.
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Experiment-free learning-in-simulation framework
Here, we present an experiment-free learning-in-simulation framework 
which is data-driven and dynamics-aware, using reinforcement learn-
ing to expedite the development of exoskeleton controllers for multi-
modal locomotion assistance (Fig. 1b). First, to enable experiment-free 
learning, the data-driven components of our approach consist of three 
interconnected multilayer perceptron neural networks for motion 
imitation, muscle coordination and exoskeleton control (Fig. 2). Our 
control framework learns from human kinematic trajectory data for 
walking, running and stair climbing, obtained from a motion capture 
dataset25 (10 s reference data for each activity from one representative 
subject). Subsequently, the neural-network-based exoskeleton control-
ler evolved through millions of epochs of musculoskeletal simulation to 
improve human performance by maximizing rewards (that is, the reduc-
tion of muscle activations). The training of the control policy runs once 
for 8 h on a graphics processing unit (GPU) (RTX3090, NVIDIA) for the 
controller to learn effective assistance for all three activities (Fig. 1c). 
Second, to improve simulation fidelity and training data-efficiency, 
the dynamics-aware components of our approach incorporate a 50 d.f. 
full-body musculoskeletal model with 208 skeletal muscles of lower 
and upper limbs (Fig. 2a) and the mechanical model of a custom hip 
exoskeleton used in this study (Fig. 2b). Reinforcement learning is 
notoriously data hungry26 and is thus computationally expensive. By 
incorporating physics models into the learning process, we are able to 

guide the learning process and improve efficiency. Third, we use a linear 
elastic model27 to simulate realistic human–robot contact to facilitate 
controller design. The musculoskeletal model and exoskeleton control-
ler are trained simultaneously to produce high-fidelity biomechanical 
reactions with exoskeleton assistance, ultimately obtaining a unified 
controller across three activities and their transitions purely in simula-
tion (Fig. 2c).

Our learning-in-simulation framework enables end-to-end control 
as it maps the sensor inputs of a robot to assistive torque without any 
intermediate steps. The learned controller is computationally efficient 
and consists of a three-layer fully connected network and thus it can be 
implemented on a microcontroller. Compared to human-in-the-loop 
methods which require expensive equipment and extensive human 
tests to tune of the device, our controller requires kinematic measure-
ments which are easy to obtain from portable wearable sensors, that 
is, one nine-axis inertial measurement unit (IMU) sensor (LPMS-B2, 
LP-Research) on each thigh, and accommodates three activities and 
transitions automatically without handcrafted control (Figs. 1d and 2d). 
The generated assistive torque profile is adaptive to different kinematic 
patterns (thigh angle and thigh angular velocities) of each user in each 
activity (Fig. 3b). This controller is computationally efficient and effec-
tive because the control policy was trained and optimized in simula-
tion, which closely resembles the dynamics and biomechanics of the 
physical world. The primary contribution of this work is our control 
approach and its experiment-free efficiency and versatility for three 
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Fig. 1 | Experiment-free optimization of exoskeleton assistance through 
learning in simulation. a, Existing experiment-based strategies for the 
controller development and real-world deployment of exoskeletons. The 
post-training column indicates the tuning time needed for the controller to  
be deployed in the real-world application. b, The proposed experiment-free 
method is called learning in simulation. c, The controller training based on 
neural networks in simulation for 8 h (left) and the immediate real-world 

deployment of an autonomous learned controller on an untethered exoskeleton 
without further training (right). d, Assistance of walking, running and stair 
climbing by the learned controller. e, Reduced metabolic cost for three activities 
(walking, running and stair climbing) by the adaptive learned controller. Values 
in e are mean and s.d. (the experiments in e were repeated independently; n = 8 
for walking, n = 8 for running, n = 8 for stair climbing).
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locomotion activities obtained by means of learning in simulation. 
The controller also significantly reduced metabolic expenditures in 
three activities compared to state-of-the-art portable exoskeletons 
(Figs. 1e and 5c). These results highlight the feasibility of our reinforce-
ment learning method despite large biomechanics variability among 
different individuals.

Activity-adaptive versatile control
To demonstrate the controller’s ability to adapt to different locomo-
tion activities, we conducted a treadmill experiment (Extended Data 
Table 1 listed the participants’ information) for walking and running at 
three different speeds. The weights and biases in the controller network 
are taken directly from the simulation and the inputs are thigh angles 

and angular velocities measured from one IMU sensor mounted on 
each thigh. These wearable sensor inputs are used to decode human 
intention and generate the desired assistive torque of the exoskeleton 
(Fig. 3a). The controller consists of a three-layer neural network and 
is implemented on a desktop computer running Simulink Real-time. 
Our method does not require intermediate activity detection or gait 
cycle detection. The assistance torque is generated in real-time at 
each time step (100 Hz, namely, 0.01 s) using the current thigh angle 
and thigh angular velocity plus the history data from the past 0.03 s 
(corresponding to three time steps). Through training in the simula-
tion, our controller learned to treat human movement as a continuous 
process and produces appropriate real-time assistance torque which 
is synergistic to the user movement during not only steady-state move-
ments but also the transition phases. To facilitate comparison with the 
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maximum and minimum values (n = 8; individual participants). The experiments 
in b and c were repeated independently for each speed. Results for maximum 
flexion time, maximum extension torque and gait duration are available in 
Supplementary Fig. 1.
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literature8,13,15,28–36, we conducted treadmill experiments for walking at 
0.75, 1.25 and 1.75 m s−1 and running at 2 m s−1. We chose to test across 
gait speeds to demonstrate the generalizability of the control policy. 
The assistive torque generated by the controller learned in the simula-
tion is adaptive to walking and running at different speeds. The torque 
profiles of each participant (n = 8) were slightly different in shape for 
each activity because our controller was adaptive to different kinematic 
locomotion patterns (thigh angle and angular velocity) of each partici-
pant (Fig. 3b). The magnitude of the torque profile between walking 
and running also increases with locomotion speeds, demonstrating 
its ability to provide synergistic assistance for activities with different 
intensities (Fig. 3c).

Continuous assistive torque profile
To demonstrate the controller’s ability to generate smooth and syner-
gistic assistance for three activities and their transitions, we conducted 
an activity-varying experiment in the real world for one participant. 
The participant started from slow walking at approximately 0.8 m s−1, 
accelerated to running at approximately 2 m s−1, then decelerated 
and finally began stair climbing (seven stairs) in a smooth manner 
(Fig. 4a). The same neural network controller used in the treadmill 
experiment was implemented on a hierarchical mechatronics archi-
tecture with a high-level microcontroller (Raspberry Pi 4) which sent 
torque commands to a low-level microcontroller (Teensy, PJRC) located 
in a waist-mounted control box. The torque profile during walking, 
running and stair climbing exhibited a distinct change in the profile 
shape as well as the magnitude of the assistance (Fig. 4b). Mechanical 
power of the exoskeleton also varied with the locomotion intensity 
(Fig. 4c), demonstrating the ability of the controller to provide syner-
gistic assistance to the user. Several minor negative power peaks are 
present because readings of the IMU sensors do not precisely reflect 
the actual movement of the thighs because of soft wearable straps. 
Yet, these negative peaks are small (corresponding to an average of 
3.47% of total delivered mechanical work for each gait cycle) and dura-
tions are brief (approximately 0.04–0.08 s, corresponding to 6–8% 
gait cycle), which has a negligible effect on the overall benefit of the 
exoskeleton assistance.

Versatile assistive control with metabolic rate 
reduction
Metabolic rate is one key metric used to evaluate human performance 
during exoskeleton-assisted locomotion37. The robotic assistance 
substantially improved the energy economy of several participants 
during walking (n = 8), running (n = 8) and stair climbing (n = 8) for all 
participants, demonstrating the effectiveness of the controller (Fig. 5a, 
Extended Data Fig. 6 and Extended Data Table 2). For each activity, we 
tested three different conditions, namely, assist on, assist off and no 
exoskeleton (no exo). Two nine-axis IMU sensors mounted on both 
thighs were used to measure the joint angles and angular velocities. 
During level walking at 1.25 m s−1 on a treadmill for 5 min, the net meta-
bolic rate (last 2 min) for the no exo condition of 2.91 ± 0.26 W kg−1 was 
reduced to 2.19 ± 0.19 W kg−1 for the assist on condition (mean ± s.e.m.). 
The metabolic rate reduction of the assist on conditions compared with 
the no exo conditions ranges from 19.9% to 30.8%, with an average of 
24.3% (Fig. 5a). During level running at 2.0 m s−1 on the treadmill for 
5 min, the net metabolic rate (collected for the last 2 min) for the no 
exo condition of 8.25 ± 0.92 W kg−1 was reduced to 7.19 ± 0.85 W kg−1 for 
the assist on condition (mean ± s.e.m.). The metabolic rate reduction 
of the assist on conditions compared with the no exo conditions ranges 
from 7.6% to 20.8%, with an average of 13.1%. During stair climbing at 
65 steps min−1 on a step mill for 5 min, the net metabolic rate (collected 
for the last 2 min) for the no exo condition of 5.54 ± 0.24 W kg−1 was 
reduced to 4.66 ± 0.22 W kg−1 for the assist on condition. The metabolic 
rate reduction of the assist on conditions compared with the no exo 
conditions ranges from 8.7% to 25.7%, with an average of 15.4% (Fig. 5a). 
Collectively and to the best of our knowledge, these are the highest 
metabolic rate reductions among the previous literature with portable 
hip exoskeletons for walking, running and stair climbing (Fig. 5b,c).

Discussion
The key challenge in the development of simulation-to-reality (sim-
2real) methods for wearable robots stems from the challenge of 
considering the interaction of both the human and robot, as well as 
the formidable sim2real gap which exists when a trained controller 
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is deployed on physical robots27,38. We address these challenges with 
three aspects of our learning-in-simulation framework. First, our con-
trol neural network is designed to decouple the measurable states (that 
is, wearable sensor inputs) and unmeasurable states (for example, 
human joint moments and muscle activations) (Extended Data Fig. 1) 
so that the neural network controller only relies on measurable states 
to directly generate an assistive torque profile. Second, the three neural 
networks in our framework are trained simultaneously in the simulation 
such that the learning process concludes only when the exoskeleton 

controller reduces human effort and the virtual human model performs 
the desired locomotion while keeping balance. Third, we use domain 
randomization on the kinematic properties of the physical models in 
the simulation so that the learned controller is generalizable to different 
human subjects, thus promoting adaptive assistance.

Our data-driven and dynamics-aware reinforcement learning 
method with musculoskeletal simulation provides a foundation for 
turnkey solutions in controller development for wearable robots. Our 
simulation-trained end-to-end controller can generate continuous 
assistive profiles for walking, running, stair climbing and their transi-
tions without any experimental tuning or handcrafted control laws. 
The controller produces immediate human energy reduction when 
directly deployed on physical hardware. This learning-in-simulation 
method is an important advancement in wearable robotics and 
potentially offers a scalable solution for exoskeletons, overcoming 
the need for time-consuming equipment for rapid deployment in the 
real world. As a generalized and efficient learning framework, this 
learning-in-simulation control method is applicable for a wide variety 
of exoskeletons including both portable2,32,34,36,39–42 and tethered8,31,40,42,43 
versions, hip exoskeletons28,31,33,35,36,40, knee exoskeletons41,42,44 and ankle 
exoskeletons2,43,45. With a similar torque density as the state-of-the-art 
portable exoskeleton46, the increased human performance achieved in 
this work mainly stems from our experiment-free and versatile control-
ler with our robot. In addition, our robot produces substantial output 
torque (18 N m) which is beneficial to assist several activities such as 
running and stair climbing which require more assistance than walking.

In this work, our neural-network-based controller generates adaptive 
assistance torque profiles which are specific to the kinematic locomo-
tion patterns of each user (Fig. 3). The controller requires simple and 
easy-to-measure thigh kinematics (angle and angular velocity) as inputs 
through wearable IMU sensors (Figs. 2d and 3a). This level of individu-
alization is achieved purely through computer simulation without any 
online tuning process or human subject training with the device. Thus, 
it facilitates the generalization of our method to other activities. The 
controller in this work was trained for able-bodied individuals and is 
not directly applicable to people with gait impairments or amputation 
because of the substantial biomechanical differences. Because this 
generalized method can simulate both robotic devices and human 
biomechanics, we can create digital twins of the human and robot in 
the simulation. For human simulation, our method can model humans 
with various gait impairments, making it potentially suitable to assist 
people with disabilities (for example, stroke, osteoarthritis and cerebral 
palsy) with a reformulation of reward functions to account for differ-
ent gait characteristics such as joint loading or range of motion and 
minor individualized data to address their specific needs. For device 
simulation, our method can be extended to a wide variety of robotic 
assistive devices (for example, exoskeletons and prostheses39,47), aid-
ing both able-bodied individuals with intact limbs as well as those with 
amputation. Our proposed training framework has the potential to 
adapt the human musculoskeletal model in simulations to account for 
specific impairments or muscle weakness. The effectiveness of such 
customized controllers for patients, compared to their performance 
with able-bodied individuals, will need to be studied in future work.

This study shows that we can bridge the sim2real gap in wearable 
robotics by means of learning-in-simulation of an end-to-end control-
ler to immediately assist multimodal locomotion. Previous studies are 
limited by intensive human tests, handcrafted rules and the inability 
to adapt to different activities. We demonstrate through steady-state 
walking and running experiments (Fig. 3) and the activity transition 
experiment (Fig. 4) that our controller can generate synergistic assis-
tance to the user’s versatile movements. Although the primary con-
tribution of this work is the experiment-free and versatile assistance, 
the experimental results also show that we have achieved the great-
est metabolic cost reduction for walking, running and stair climbing 
among state-of-the-art portable exoskeletons (Supplementary Table 4). 
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Training such a controller using reinforcement learning in the simula-
tion is challenging, especially properly defining the reward function. 
We found that it is crucial to incorporate both dynamics-aware physical 
equations and data-driven learning of three networks into the train-
ing process as the physical models facilitated the controller to learn 
an effective policy through millions of epochs of simulation. We also 
found that a reward function which includes tracking of kinematic refer-
ence joint trajectory, centre-of-pressure-based balance performance 
and reduction of muscle activations produces a controller that was 
ultimately successful. Previous research demonstrated that muscle 
activation provides a good prediction of metabolic rate48–51 when com-
pared with other biological metrics, such as centre-of-mass work and 
total joint work and optimizing leg muscle activations during gait can 
significantly reduce metabolic costs52. Although it might be tempting to 
directly incorporate the metabolic rate terms into the reward function, 
the metabolic energy simulation involves muscle parameter calibra-
tion on hundreds of muscles, which poses potential reliability issues 
for computation. In addition, the complex computation of metabolic 
energy will further elicit non-smooth changes in the reward function 
over time steps, a situation difficult for reinforcement learning appli-
cations. Thus, further study is warranted because of its notably more 
complex mechanisms compared to muscle activation.

We believe the success of our controller can be attributed to the fol-
lowing factors. First, our end-to-end method directly maps human kin-
ematic input to robot assistance output without the need for discrete 
activity classification or gait phase segmentation. Second, our frame-
work incorporates the robot controller in the simulation in concert 
with musculoskeletal modelling, closing the loop in simulation for the 
training process, whereas open-loop control is used in state-of-the-art 
study18. Third, our method only requires low-dimensional sensor 
input (one IMU per leg) to infer high-dimensional human kinetics in 
50 joint d.f. in the latent space which are not measurable. However, 
our controller also has limitations. When gaits which dramatically 
deviate from walking, running or stair climbing (that is, the training 
data used here from a public dataset25) occur, the controller may not 
be able to provide as effective assistance as in the normal case (Sup-
plementary Fig. 5). If the gait patterns deviate too much off the limit 
(that is, the actual hip joint range of motion is more than 50% away 
from that of the reference kinematic trajectory used in the simula-
tion), the controller will set the assistance to zero and let the user 
take full control. Future work may involve an investigation into active 
intervention from the controller to assist the user in recovering from  
such conditions.
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Methods

Dynamics-aware modelling of human muscle mechanics
In the muscle coordination neural network, we replicated human mus-
cle mechanics to simulate authentic musculoskeletal responses. This 
approach enables realistic simulations of human movements, given 
that such movements are predominantly driven by muscle activations. 
As the human musculoskeletal model is composed of rigid skeletal seg-
ments connected by geometrically stretchable muscles, the contrac-
tion and relaxation of these muscles lead to the rotation of joints and 
therefore the motion of the whole body. Muscle activations that are 
regulated by the nervous system determine the change of the muscle 
fibre length and further, the change of muscle force. The musculo-
skeletal model (Fig. 2a and Extended Data Fig. 3) was parametrized to 
be 170 cm in height, 72 kg in weight consisting of 50 joint d.f. and 208 
musculotendon units for the complete upper and lower body. The 
modelled d.f. included eight revolute joints (tibia, foot and forearm) 
and 14 ball-and-socket joints (femur, talus, spine, torso, neck, head, 
shoulder, arm and hand, each with 3 d.f.). Each musculotendon unit 
was represented as a polyline which began at the origin of the muscle, 
passed through a sequence of waypoints and ended at the insertion 
point53. An active muscle force was generated by each musculotendon 
unit through contraction which was applied between the two bones at 
its origin and insertion. When the musculotendon unit was fully relaxed 
(without active contraction), only passive force was produced as a result 
ot its background elasticity. Muscle tension fM was generated by the 
contraction of muscle fibres using a Hill-type model54:

f f L L a a f L f L f L= ( , ,̇ ) = × ( ) × ( )̇ + ( ) (1)M M L v p

where L is the muscle length, a is the muscle activation, fL (L) and fv L( )̇  
are force–length and force–velocity functions and fp (L) is the passive 
force developed by a muscle. The actual muscle force was given by:

F f F= × (2)M M max

where Fmax is the maximum isometric force that the muscle can gener-
ate. The force–length relationship fp was specified by an exponential 
function.
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where kP is a shape factor, e0
M is the passive muscle strain.

Dynamics-aware modelling of human dynamics of motion- 
imitation network
We modelled the human dynamic response to evaluate the influence of 
muscle forces and exoskeleton assistance on human movements. We 
used Euler–Lagrangian equations in generalized coordinates:

M c J J( )¨ + ( , ˙) = + (4)M
T

M ext
T

extp p p p F F

where p is the vector of joint angles, p̈ is the vector of joint angular 
accelerations, superscript T is the matrix transpose, Fext is the vector 
of external forces and FM is the vector of muscle forces, which is a func-
tion of muscle activations a a a= ( , , )n1 1 ⋯a  for all muscles. M( )p  denotes 
the generalized mass matrix and p pc( , ˙) comprises of Coriolis and 
gravitational forces. JM and Jext are the Jacobian matrices that map the 
muscle and external forces to the joint space, respectively.

Dynamics-aware modelling of human–robot interaction of 
exoskeleton control network
We modelled human–robot interaction to evaluate the influence of 
the exoskeleton assistance on human movements. As an exoskeleton 

was not perfectly fixed to the wearer’s body because of soft wearables, 
the actual torque experienced by a wearer was not equal to the gener-
ated torque from the actuators. To simulate the interaction forces and 
moments at all wearable strap locations (Fig. 2c), we imported the three- 
dimensional CAD model of the exoskeleton to the simulation environ-
ment and connected it to the musculoskeletal model by means of linear 
bushing elements. A linear bushing element represented a bushing (B) 
connecting a Cartesian coordinate frame55 fixed on the exoskeleton to 
a Cartesian coordinate frame fixed on the human wearer with linear 
translational and torsional springs and dampers. During motion, the 
deviation of the two frames in the translational and torsional directions 
amidst the human and exoskeleton gave rise to bushing forces 
F F F F= [ , , ]B B

x
B
y

B
z  and moments τ τ τ τ= [ , , ]B B

x
B
y

B
z  which were given by:

ττ θθ ββ θθ= ⋅ + ⋅ ˙, = ⋅ + ⋅ ˙ (5)B B αF k d c d

where d d d= [ , , ]x y zd  is the vector of translational distances along the  
x, y and z axes between the origins of the two frames and θ θ θθθ = [ , , ]x y z  
is the vector of x–y–z body-fixed Euler angles between the two frames. 

k k k= [ , , ]x y zk  and c c c c= [ , , ]x y z  represent the translational stiffness 
and translational damping along the x, y and z directions, respectively. 

α α ααα = [ , , ]x y z  and  β β βββ = [ , , ]x y z  represent the rotational stiffness 
and rotational damping around the x, y and z axes, respectively. We 
modelled different resistance strengths of straps along different direc-
tions. Specific values for each of these parameters are available in Sup-
plementary Table 1 and were chosen on the basis of empirical testing.

Data-driven learning of motion-imitation neural network
The motion-imitation neural network π ( )ϕ m ma s  (three layers, 256 × 
256 × 50 in size) (Extended Data Fig. 2) was designed for the human 
musculoskeletal model to learn walking, running and stair climbing 
motions in the simulation. The network took in the human full-body 
human kinematic states sm (hip joint angle and angular velocity) as the 
input and produces target human joint angle profiles am for each activ-
ity. The objective of the motion-imitation neural network πϕ was to 
learn an imitation policy for the human agent that maximizes the fol-
lowing discounted sum of reward:







∗


∑E γ rπ = argmax (6)p t

T t
tπ r (π) =0

−1

where E is the expectation of the reward, T is the number of time steps 
in each epoch, and t is the time index. We designed the reward function 
r w r w r w r= + +t ,human

p
p

root
root

cop
cop  as the weighted sum of several  

subrewards to encourage the human musculoskeletal model to imitate 
a target motion (walking, running and stair climbing) while satisfying 
a few constraints. Parameters rp, rroot and rcop represent the subrewards 
corresponding to joint position error, pelvis position error and centre 
of pressure (CoP) of the musculoskeletal model (for detecting balance), 
respectively. Parameter w denotes the corresponding weight for each 
subreward. The imitation reward (rp, rroot) was designed to encourage 
the human agent to minimize the position difference between the  
actual and reference motion from datasets in terms of the joint position 
phuman and pelvis position proot. We used 10 s (120 Hz × 1,200 frames) of 
reference data from one representative subject in walking, running 
and stair climbing from the public motion capture database25:
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where j is the index of joints, p p( , )human,desired root,desired
 are the refer

ence positions of the joints and root from the dataset. Parameters  
phuman and proot are the actual human joint angles.



The term rcop describes how well the controller maintains balance with 
the exoskeleton assistance in terms of movement of the whole system’s 
CoP. A higher reward was generated when the CoP is in a region S around 
the centre of the foot support (Supplementary Fig. 7):

r σ D c S c S r c S= exp (− ‖ ( , )‖ ) if ∈ ; = 0 if ∉ (9)cop cop cop
2

cop cop cop

where σ = 10cop  is the weight, D c S‖ ( , )‖cop  is the Euclidean distance 
between the CoP and the centre of S. The output of this neural net-
work phuman,desired is the desired joint angles at the 50 joint d.f. of the 
human musculoskeletal model to produce the desired locomotion. 
Following that, we used proportional-derivative control to specify the 
desired joint angles, which directly correspo nd to the desired human 
joint torques ττhuman:

k kττ = ( − ) − ˙ (10)human p human,desired human v humanp p p

where kp = 50 and kv = 14.14 are proportional and derivative gains used 
to compute the desired joint acceleration p̈human,desired

, respectively. 
The weights wp, wroot and wcop are hyperparameters of the neural net-
works. Grid search is used to find the optimal values for hyperparam-
eters. It involves performing an exhaustive search on a specific 
hyperparameter configuration. For example, wp is chosen from [0.25, 
0.5, 0.75, 1] and wroot is chosen from [0.1, 0.2, 0.3, …,0.9,1]. We assessed 
the overall reward equations (7)–(9) using all weight combinations and 
identified the set of weights that yielded the best overall performance 
during testing: wp = 0.75, wroot = 0.5 and wcop = 0.2.

Data-driven learning of muscle coordination
The muscle coordination neural network π ( )θ a  (four layers, 
512 × 256 × 256 × 208 in size; Extended Data Fig. 3) was constructed to 
actuate the human musculoskeletal model through modulation of 
muscle activations. The network took desired human joint torques 
from the motion-imitation neural network as input and output activa-
tion values for each of the 208 muscles. The lower limb muscles (n = 108) 
are included in the calculation of the reward function equation (11) 
because we assume the assistance to the hip does not affect the upper 
body muscles. During the optimization process using equation (11), 
all these 108 muscles were treated as a whole to minimize the overall 
muscle activity. The muscle activations a were applied to the muscu-
lotendon units over the entire body which in turn move the skeletal 
segments that elicit human movements. The objective of this network 
was to adjust the activations of each muscle to best reproduce the 
target joint torques.

To train the neural network, we formulated it into a supervised 
learning-based regression problem to learn collaboratively with the 
motion-imitation neural network. A deterministic policy was used to 
minimize the differences between the actuated joint accelerations  
and the desired human joint acceleration p̈human,desired based on the  
output of the motion-imitation network, which led to the following 
design of the loss function:

E M J J wloss = ‖¨ − ( + − )‖ + ‖ ‖ (11)human,desired
−1

M
T

M ext
T

ext
2

a
2p F F c a

where wa are the weighting factors regularizing the muscle activation 
effort.

Data-driven learning of exoskeleton control
The neural network of exoskeleton controller a sπ ( | )ϕ e e  (three layers, 
128 × 64 × 2 in size) (Extended Data Fig. 4) produces high-level real-time 
assistance torque commands to assist the current activity. The network 
takes proprioceptive history se ( joint angles and angular velocities 
from three consecutive previous time steps, 16 × 1 vector) from the 
IMU sensor on each leg as input and consequently outputs joint target 
positions ae for the exoskeleton motors. Our method only takes 

low-dimensional sensor input to infer high-dimensional human kinet-
ics in 50 joint d.f. in the latent space which are not measurable. This is 
because human movement (kinematics data) can encode information 
about the underlying human physiological processes such as metabolic 
energy2. The objective was to learn a continuous control policy for the 
exoskeleton which maximizes the following discounted sum of rewards 
to improve human performance:

∑E γ rπ = argmax (12)p t
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The instantaneous reward rt comprises five subrewards: rm is the 
muscle work, ras is the action smoothness, rτ is the exoskeleton energy 
consumption, w is the corresponding weight for each subreward.  
The subreward rcop was used to prevent a human model from falling 
down. Parameters rp and rroot correspond to the same subrewards used 
in the motion-imitation neural network. This ensures that the reward 
of the exoskeleton control neural network achieves its maximum  
only if the human model is able to follow the desired trajectory, thus 
facilitating sim2real transfer by incorporating human response.  
The reward ras encourages the controller to generate a smooth  
assistance profile to improve the subject comfort. We penalized the 
second-order finite difference derivatives of the actions ae (target  
joint angle):

a a ar σ= exp(− ‖( ) − 2( ) + ( ) ‖ ) (14)t t tas as e e −1 e −2
2

In our experiment, wm = 0.5, was = 0.2 and wτ = 0.1. To ensure smooth 
motion, the output from the trained controller neural network was first 
filtered by a second-order low-pass filter before being applied to the 
exoskeleton. Subsequently, to further obtain responsive corrections on 
the joint torques, a proportional-derivative control loop was used for 
which preprocessed actions ae are specified as proportional-derivative 
setpoints. The final proportional-derivative-based torques applied to 
the hip joint are determined from:

k kττ = ( − ) − ˙ (15)exo p e exo v exoa p p

where kp = 50 and kv = 14.14 are proportional and derivative gains, 
respectively.

Closed-loop simultaneous training of three neural networks
We developed a decoupled training scheme (Supplementary Tables 1 
and 2) using PyTorch in which the exoskeleton neural network con-
troller only requires measurable inputs from wearable sensors in the 
physical world (for example, human joint angles and angular velocities), 
whereas the musculoskeletal model had access to more intricate infor-
mation from the model which generally is not available in reality (for 
example, the activation level of each muscle, real-time CoP and so on). 
However, to ensure a causal relationship between the musculoskeletal 
model and the exoskeleton controller, we incorporated subrewards 
related to muscle work and joint/pelvis position tracking error in the 
reward function equations (12) and (13) of the exoskeleton control 
neural network so that it achieves high reward only if both trainings are 
successful. Such training setup ensures that the exoskeleton control 
policy incorporates human response during its training process to 
facilitate real-world deployment.

It is a well-known challenge to transfer a trained controller from 
simulation to real-world settings while ensuring accuracy and behav-
iour similar to that in the physical environment (for example, indi-
vidual human properties and robot properties)56–58. Typically, such 
attempts usually result in undesirable performance27,38 (for example, 
ill-timed robotic assistance or unsafe action from the robot) which can 
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in part be attributed to the discrepancy in the exoskeleton dynamics 
between the real world and the simulation. To tackle this challenge and 
bridge the sim2real gap, our solution incorporated domain randomi-
zation, a machine learning technique that was first proposed by Tobin 
et al. to facilitate bridging the sim2real gap for object localization59. 
First, we perturbed robot dynamics parameters and musculoskeletal 
dynamics parameters to enhance the robustness of the trained policy 
to this discrepancy. We randomly sampled the dynamics properties of 
the exoskeleton (for example, mass, inertia, centre of mass, friction 
coefficient and observation latency; Supplementary Table 3) from a 
uniform distribution in each episode to account for the modelling 
error. Second, for musculoskeletal dynamics parameters, the maximum 
isometric force in the Hill-type model equations (1)–(3) of all lower 
limb muscles was randomized within a prescribed range to account 
for muscle strength variability among each individual. Combining 
these two approaches, the optimization objective in equation (12) was 
then modified to maximize the expected reward across a distribution 
of dynamics characteristics ρ μ( ):







∗
 

∑E E γ rπ = argmax (16)μ ρ μ p t

T t
tπ ( ) r (π) =0

−1

where μ represents the perturbed dynamics parameter values in the 
simulation. This intentionally introduced variability in the simulation, 
enabling the trained controller to be more robust against heterogene-
ous real-world conditions.

We ran the simulation on a computer equipped with an NVIDIA 
RTX3090 GPU. The simulation was terminated when the reward value 
of the exoskeleton control network converged and stopped increasing 
at around iteration no. 3,500. With one iteration taking around 8 s, the 
entire simulation took slightly less than 8 h.

Deployment of the learned controller
We evaluated the efficiency and versatility of the trained control-
ler on our portable hip exoskeleton60 with quasi-direct drive actua-
tion61 in both indoor and outdoor settings. The hip exoskeleton has 
a total weight of 3.2 kg and can produce a peak torque of 18 N m. For 
fixed-speed experiments on the treadmill, the exoskeleton was con-
nected to a target personal computer with Simulink Real-time system 
(MathWorks) (Supplementary Fig. 2) to log both robot and human data 
(for example, human kinematics, robot states, output of each neural 
network and metabolic rate data). The Simulink system ran both a 
high-level exoskeleton control neural network and a low-level motor 
control module. The deployed exoskeleton control network in the  
Simulink model imported the network parameters directly from the 
simulation. For outdoor experiments with three activities, we imple-
mented the same controller on portable electronics using a micro-
controller (Raspberry Pi 4) running high-level control in Python which 
sends the generated torque commands to a mid-level microcontroller 
(Teensy, PJRC) which finally regulates the low-level motor control 
(Extended Data Fig. 5 and Supplementary Fig. 3).

Data availability
All data supporting the findings of this study are available in the Article 
and its Supplementary Information.  Source data are provided with 
this paper.

Code availability
Pseudocode for the learning-in-simulation algorithm and training 
process can be found in the GitHub repository https://github.com/
IntelligentRobotLearning/pseudocode_learning_in_simulation.
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Extended Data Fig. 1 | Overview of the learning-in-simulation control framework. a,b, Schematic illustrations for the learning-in-simulation architecture (a) 
and the control structure for online deployment (b).
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Extended Data Fig. 2 | Motion imitation neural network for versatile activities. Schematic illustrations for the autonomous learning framework of the 
reference motions (walking, running, stair climbing) from datasets based on human kinematics input and joint torque command output.



Extended Data Fig. 3 | Muscle coordination neural network. Schematic illustrations for the muscle coordination neural network based on human joint torque 
input and human muscle actuation output.
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Extended Data Fig. 4 | Exoskeleton control neural network. Schematic illustrations for the exoskeleton control neural network based on exoskeleton state 
history input and joint torque command output.



Extended Data Fig. 5 | Exoskeleton design. a–c, Overall view of the whole system (a), actuator (b) and electronics (c).
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Extended Data Fig. 6 | Experiment protocol for metabolic rate and kinematic data collection during walking, running and stair climbing (also available on 
Protocol Exchange at: https://doi.org/10.21203/rs.3.pex-2632/v1) .

https://doi.org/10.21203/rs.3.pex-2632/v1


Extended Data Table 1 | Participant information
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Extended Data Table 2 | Summary of experiments
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