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Age-Dependent Upper Limb Myoelectric Control
Capability in Typically Developing Children

Miguel Gonzalez, Hao Su , Member, IEEE, and Qiushi Fu , Member, IEEE

Abstract— Research in EMG-based control of prostheses
has mainly utilized adult subjects who have fully developed
neuromuscularcontrol. Little is known about children’s abil-
ity to generate consistent EMG signals necessary to control
artificial limbs with multiple degrees of freedom. As a first
step to address this gap, experiments were designed to val-
idate and benchmark two experimental protocols that quan-
tify the ability to coordinate forearm muscle contractions in
typically developing children. Non-disabled, healthy adults
and children participated in our experiments that aimed to
measure an individual’s ability to use myoelectric control
interfaces. In the first experiment, participants performed
8 repetitions of 16 different hand/wrist movements. Using
offline classification analysis based on Support Vector
Machine, we quantified their ability to consistently produce
distinguishable muscle contraction patterns. We demon-
strated that children had a smaller number of highly inde-
pendent movements (can be classified with > 90% accu-
racy) than adults did. The second experiment measured
participants’ ability to control the position of a cursor on a 1-
DoF virtual slide using proportional EMG control with three
different visuomotor gain levels. We found that children had
higher failure rates and slower average target acquisitions
than adults did, primarily due to longer correction times that
did not improve over repetitive practice. We also found that
the performance in both experiments was age-dependent in
children. The results of this study provide novel insights into
the technical and empirical basis to better understand neu-
romuscular development in children with upper-limb loss.

Index Terms— Myoelectric control, pattern recognition,
motor development, upper limb, children.

I. INTRODUCTION

THE major cause of upper-limb loss in children is congen-
ital limb reduction [1]. It was estimated that congenital

upper limb deficiency occurs in approximately 4 out of every
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10,000 birth per year in the United States [2], and similar
rates have been reported worldwide [3]. It is desirable to fit
terminal devices at an early age for children to increase the
acceptance of a prosthesis in their later life [4]–[6]. However,
frequent replacement of prostheses to match limb growth
across adolescence has been challenging. Over the past decade,
thanks to the technological advancement of 3D printing,
upper-limb prostheses have become more accessible for these
patients to be fitted with low-cost transitional devices [7],
[8]. Most pediatric prosthetic hands have simple mechatronics
designs with body-powered or simple myoelectric (i.e., using
the electric activity of muscle contraction) controllers [9],
[10]. This is due to considerations of size, weight, and cost
limitations for developing these devices, as well as limited
space for attaching surface electrodes to acquire muscle acti-
vation signals, i.e. electromyography (EMG). In contrast, more
complex muscle contraction patterns can be used to support
individual finger movements and a variety of grip types in
state-of-the-art hand/wrist prostheses with multiple degrees of
freedom (DoF) developed for adults [11]. The differences in
the control and use of pediatric and adult upper limb prostheses
raise the question about the extent to which children with
congenital or early acquired limb reduction can adapt to adult
prostheses effectively after they grow into adults. In fact,
adults with congenital limb reductions are more likely to
wear a passive terminal device than those with acquired limb
difference [12]. Some studies suggest that muscle contraction
patterns during myoelectric control are less distinguishable
in individuals with congenital limb reduction compared to
those who had an amputation as an adult [13]–[15]. This is
possibly due to difficulties in imagining movements with a
limb they never had. Furthermore, it has been shown that
differences exist in the neural structure of the motor cortex
between individuals with congenital and traumatic limb loss,
and patients with congenital limb reduction may not possess
sensorimotor representations of the missing limb possibly due
to a lack of experience of the movements [16]. However, the
patients (and healthy control) in these studies were mostly
adults. Therefore, it is unclear the extent to which these
findings are related to the neuromuscular development of the
affected limbs in children with limb loss. Moreover, it is
unclear whether such development can be better facilitated
by training programs in relation to the future use of advanced
adult prosthetics.

The main objective of the present study is to establish a
benchmark protocol to quantify the capacity of myoelectric
control in non-disabled developing children, which can be
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used as a baseline for future studies with pediatric patients to
assess their deficits. Clinically available outcome metrics, such
as ACMC [17], SHAP [18], or DASH [19], require users to
wear prosthetic hands to evaluate. Although they are valuable
assessment tools for functional capabilities, the results are
partially determined by the models of the prosthetic devices
used in the tests. In contrast, the present study focuses on
directly assessing the ability to generate EMG signals for myo-
electric control, instead of the functional performance of using
a specific terminal device. It is important to emphasize that a
better understanding of the neuromuscular capacity underlying
myoelectric control can potentially guide the design and
selection of terminal devices, which can ultimately improve
the outcome of these functional measures.

In prosthetic applications, a myoelectric interface extracts
intent for moving the terminal device. Simple conventional
myoelectric interfaces use on/off or direct control with one
or two electrodes and transform EMG signals into one DoF
motion. Advanced interfaces that record from electrode arrays
can be divided into two main categories: classification-based
and regression-based [20]. Many different EMG signal fea-
tures and pattern recognition algorithms have been tested
for the classification of discrete EMG patterns [21]–[26].
Earlier work used each pattern to drive a function module
that moves selected joint(s) at a fixed speed (e.g., pinch
grasp or wrist rotation), but recent studies showed that pro-
portional joint speed augmentation with ‘class activation’
in addition to class labels could improve performance [27],
[28]. The advantage of classification-based interfaces is that
they can afford as many different functions as the number
of distinctive muscle contraction patterns one can generate,
and more functions can be enabled if one pattern is used
for switching between function modules. This is particularly
useful to control many DoFs, such as in transhumeral amputees
with targeted muscle reinnervation surgeries [29]. A major
limitation of classification-based interfaces is the need to
sequentially activate multiple functions for more complex
tasks, rendering user control unintuitive and slow. This can
be partially mitigated by defining more classes that represent
functional combinations [30], [31]. However, increasing the
number of classes requires more extensive calibration and neg-
atively affects the robustness of the control during real-world
use [20]. In contrast, the regression-based controller prioritizes
the ability to simultaneously control multiple DoFs [32]–[36].
This approach is more intuitive because the extracted motor
intent usually originates from natural hand/wrist movements
and function switching is not needed. Moreover, it also
naturally extracts the magnitude of muscle contraction for
proportional control. Therefore, regression-based interfaces
are often called simultaneous and proportional control, which
can outperform classification -based control in some scenar-
ios [37]–[39]. However, regression-based interfaces may not
support versatile hand postures as classification-based ones do,
although novel soft prosthetic hands could compensate for this
lack of functional versatility with mechanical adaptivity during
grasping [40].

The present study focuses on two important aspects of
myoelectric control. First, a user’s neuromuscular capacity to

support different muscle contraction patterns can determine the
functionality he or she can afford to command with a terminal
device through a myoelectric interface, especially the advanced
ones. Second, real-time myoelectric control critically depends
on the capability of the human visuomotor control loop.
That is, in the absence of effective proprioceptive feedback,
the users must rely on visually monitoring the kinematics
of the terminal devices to produce movement commands
for completing the tasks. Individuals with slower and more
variable visuomotor control are more likely to perform worse
in real-time tasks. With the above considerations, we designed
two experimental protocols. Experiment 1 quantifies partici-
pants’ ability to produce consistent and distinguishable muscle
contraction patterns using offline classification analysis and
dimensionality analysis. Experiment 2 quantifies participants’
ability to control a one-dimensional computer cursor in a sim-
ple real-time target acquisition task with muscle contractions,
in which different levels of visuomotor gains are used to map
EMG signals to cursor movement speed.

From birth until late adolescence, children are in a constant
stage of maturation that involves attempted mastery over gross
and fine motor functions, from learning how to maintain
balance during their first steps to developing the hand-eye
coordination needed to strike a baseball with a bat. Further-
more, children undergo concurrent changes of neuronal and
physical structures (e.g., longer muscle length and larger mus-
cle volume), which necessitates relearning previously acquired
motor skills as their bodies grow and change. It is well estab-
lished that there are differences between typically developing
children and adults in the ability of motor control [41], such as
movement speed, accuracy, and variability [42]–[46]. Children
also have different cognitive abilities compared to adults, such
as information processing speed [47], [48], spatial working
memory [49], and attention [50]–[52]. These differences may
lead to differences in motor learning [53]–[55]. Given these
factors, it is reasonable to expect that children’s ability to use
muscle contraction for controlling artificial devices (a novel
skill) may be substantially different from adults. Therefore,
we hypothesize that typically developing children perform
worse in our two experimental tasks compared to adults, but
we expect these differences to be smaller in older children.

II. MATERIALS AND METHODS

A. Subjects

A total of 16 adult and 22 children participants enrolled
in the study. They all reported normal or corrected-to-normal
vision and no history of musculoskeletal or neurological
disorders. All participants were naïve to myoelectric control
methods. The experimental protocols were approved by the
Institutional Review Board at the University of Central Florida
(STUDY00001790) in accordance with the Declaration of
Helsinki. Informed consent and parental consent were obtained
for all participants. Participants were randomly assigned to
one of two experiment protocols (see below). The first exper-
iment included 8 adults and 8 children, and the second
experiment included 8 adults and 11 children (Table I). Note
that we recruited children of a relatively large age range to
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TABLE I
SUMMARY OF PARTICIPANT CHARACTERISTICS

Fig. 1. A. Electrode placement example. B. Experiment 1 data analysis.
C. Visual display for Experiment 2. The dashed rectangles represent
possible targets. The solid blue area is the starting area. The yellow
area is the target for this example trial. The black line is the myoelectric
controlled cursor. D. Example raw EMG signals from Experiment 1 (one
adult and one child).

investigate the effect of age. 3 children (1 in Experiment 1,
2 in experiment 2) were not able to complete the required
experimental tasks due to either technical issues or inability to
maintain attention during tasks. Handedness was self-reported
(we ask which hand they use for writing and feeding). Most
participants were right-handed, and there were one adult and
one child who were left-handed in the second experiment.

B. Experiment Setup

For all experiments, we recorded surface EMG (sEMG)
signals with eight electrodes (Trigno Quattro, Delsys Inc) at
2 kHz. Electrodes were placed equidistant radially around
the thickest part of the dominant forearm of the participants
(Fig. 1A). This represents a dense sampling approach that
does not target specific muscles. Although it cannot guarantee
the best signal quality for all electrodes, this approach has
been commonly used in previous research of myoelectric
control [35], [56], [57], because the goal is to acquire a mixture
of muscle activity from the underlying recording volume. The
lack of muscle specificity can be compensated by pattern
classification and regression algorithms. Moreover, such a
setup can be implemented in individuals with limb loss whose

TABLE II
SUMMARY OF MOVEMENT USED IN EXPERIMENT 1

underlying muscular structure can be difficult to identify.
Experiment control and visual feedback were provided by
custom-made LabView programs.

C. Experiment 1 Procedure

In the first experiment, participants were asked to mimic the
finger and/or wrist movement displayed on a monitor, using
their dominant hand. There were 16 different movements,
which were selected from commonly analyzed movements in
previous research of myoelectric interfaces (Table II). We pri-
oritized gross movement of the fingers and wrist as well
as their combinations. Fine movements of individual fingers
were not included because muscle contractions underlying fine
finger movements are difficult to produce in individuals with
limb loss. Moreover, experiment time was limited to ensure
that children remained attentive to the task requirements.

Each movement must be repeated 8 times consecutively
with 5 seconds duration and 2 seconds rest intervals. Short
breaks between movements were also given to alleviate muscle
fatigue and allow children to better maintain focus in subse-
quent movements. All participants were briefly coached by the
experimenter before each movement to ensure that required
movement can be executed appropriately.

D. Experiment 1 Data Analysis

The baseline drift and high-frequency noises of the raw
sEMG data collected in the first experiment were first removed
with a 4-th order Butterworth zero-lag bandpass filter (0.01 Hz
– 50 Hz). Because participants were not always able to follow
the timing of the experiment perfectly, we also removed peri-
ods where the magnitude of muscle activity was below 3 S.D.
of the signals collected from resting periods. Two offline
analyses were performed as described below (Fig. 1B).

The first analysis was designed to assess how well the par-
ticipants may operate myoelectric interfaces that are based on
pattern classification. We chose to use root mean square (RMS)
as the feature and support vector machine (SVM) (Gaussian
kernel, 5-fold cross-validation) as the classifier for this analy-
sis. Note that the performance of different features and clas-
sifiers may vary across applications. We choose the SVM
and RMS combination because they were consistently among
the better performing classifiers in comparative studies show-
ing higher offline classification accuracy [58]–[61]. The pre-
processed data are segmented with 100 ms windows and we
computed the RMS for each segment to create a labeled
dataset for each participant. We quantified the ‘number of
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highly independent movements’ for each subject, which was
defined as the subset of movement types that can yield
greater than 90% classification accuracy. This was obtained
through an iterative elimination procedure. Briefly, we started
with the entire dataset and removed the movement type that
had the lowest classification accuracy. Subsequently, another
evaluation was performed with the remaining movement types.
This process was repeated until all remaining movement
types can be classified with > 90% accuracy. This analysis
gives an estimate of the number of movements that could be
reliably controlled on a myoelectric hand prosthesis without
training [61].

The second analysis assessed the dimensionality of the
EMG signals in relation to simultaneous and proportional
control. We used non-negative matrix factorization (NMF)
[62] to determine the number of DoFs that underlies the
sEMG signals collected across all movement types. Briefly,
filtered sEMG data was segmented with 100 ms windows and
the segmental average of the signals (mean absolute value,
MAV) from all movements were concatenated to create a
data matrix for each participant. Each sEMG channel was
then normalized to have unit variance. The NMF algorithm
uses k covariation patterns (synergies) across 8 channels to
approximate the normalized sEMG data matrix: E = W ∗
H, where W is an 8 by k non-negative matrix representing
k synergies for 8 electrodes and H is a k by T non-negative
matrix representing the synergy activation coefficients for T
samples. Note that k can range from 1 to 8, and typically
a larger k can yield a better approximation by capturing
more variance of the data matrix [62]. We use the ‘variance
accounted for’ (VAF) metric to determine the appropriate
number of k that captures most of the total data variance:
VAF = 100 ∗ (1 – SSE/SST), where SSE represents the
sum of squared differences between the original data E and
reconstructed data W ∗ H, and SST represents the sum of
the squared original data. The calculation of VAF was done
both for all channels (global VAF) as well as within each
channel (local VAF). The dimensionality of sEMG signals
was defined as the minimum k that achieved a global VAF >
95% and all local VAF > 85%. To avoid convergence to local
minima, the NMF algorithm was repeated 20 times for each k
to find the best reconstruction. Within each repetition, the data
matrix was randomly divided into two subsets: extraction and
validation, with 75% and 25% of total samples respectively.
The synergy matrix W was computed with NMF using the
extraction subset with a given synergy number k, and was
fixed to obtain the H of the validation subset for obtaining the
global and local VAF. It should be noted that, given the nature
of the NMF algorithm, a single dimension (synergy) of the
sEMG signal can be only positively activated. This means that
two dimensions are usually needed to control one movement
DoF, working as agonist and antagonist, e.g., flexion and
extension.

Both metrics from the analysis described above, namely the
number of highly independent movements and the dimension-
ality of the sEMG signals, were compared between adults
and children using non-parametric Mann-Whitney U Test.
Furthermore, we also used correlation analysis to examine the

extent to which these metrics can be predicted by age of the
child participants.

E. Experiment 2 Procedure

In the second experiment, participants were tasked to per-
form a one-dimensional target acquisition task with propor-
tional myoelectric control of cursor speed using flexion and
extension of the wrist. This is a Fitts’ Law task in which
a faster completion time can be considered as a more effi-
cient transmission of information in the visuomotor control
loop [63]. Our task is a simpler version of the more compli-
cated 2- or 3-dimensional target acquisition tasks used in prior
myoelectric control studies [32], [38], [64], [65], as we focus
on the basic visuomotor control ability without considering
coordination among multiple DoFs. Specifically, the cursor
was presented as a vertical line moving horizontally in the
workspace. For each trial, participants must start from the
middle of the workspace and acquire a target with a width
of 2.5% of the workspace. The cursor must stay within the
target for at least 500 ms continuously to acquire the target.
The participants were instructed to complete the acquisition
as fast as possible. There was a 10-s time limit by which the
trial was terminated and considered to be failed. The target
was selected to be at one of ten possible locations (Fig. 1C)
in a pseudo- random fashion (each location was selected twice
within every block of 20 trials).

The myoelectric control signals were extracted from the
8-channel sEMG signals in real-time. Each participant first
performed a 15-second calibration session in which they
repetitively flexed and extended the wrist of their dominant
arm. The first two repetitions must be performed with the
highest muscle contraction level in each direction, i.e., maxi-
mum voluntary contraction (MVC). The calibration data was
segmented with 40 ms windows to build a calibration data
matrix with segmental averages. Subsequently, it was used to
compute an 8 by 2 synergy matrix WC with the same NMF
algorithm described above (k = 2). As constrained by the
calibration task, this approach would yield two vectors in the
pseudo inverse W+

C that map the sEMG signals to two control
signals that represent the neural drive underlying flexion and
extension of the wrist. That is C = K∗ W+

C
∗ S, where S

is the 8-channel sEMG signals (averaged per channel with
40 ms window) and K represents a scaling factor to ensure
the control signal is 1 for MVC in each direction. To prevent
unintended drift in the cursor movement, a threshold was
used to eliminate baseline noise. The threshold was set to be
roughly 50% higher than the control signal generated when
participants were resting for each direction (typically around
0.05). The difference between the portion of control signals
above the threshold (c1, c2) was mapped to cursor velocity v
with a visuomotor gain ka as follows: v = k∗

a (c1-c2). This
gain was used to regulate the sensitivity of the cursor visual
movement to participants’ muscle contraction, e.g., a higher
gain moves the cursor faster with the same contraction level.

After calibration, participants performed 18 blocks of 20 tri-
als of the target acquisition tasks with necessary rest time
between blocks. This consists of three different visuomotor
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gain settings (L: 0.1, M: 0.15, and H: 0.2). The rationale for
using multiple gain levels is to examine if participants may
have different preferences for the sensitivity of the myoelectric
control mapping. Note that visuomotor gains in clinical appli-
cations are typically determined by trial and error to match
individual patient’s capability. Participants were assigned to
one of two block sequences, both of which implemented
consecutive 3 blocks (60 trials) with the same gain. This was
designed to allow participants to improve their performance
with consistent gain levels. Therefore, the gain setting was
either L-M-H-H-M-L or H-M-L-L-M-H to counterbalance the
orders across participants. Each gain setting had a total of
6 blocks of trials.

F. Experiment 2 Data Analysis

To quantify the sensorimotor control capability in this task
when participants use myoelectric interfaces, we computed
four metrics that are commonly used in similar tasks. The
first one is simply the Failure Rate defined as the percentage
of targets that were not successfully acquired within the 10-s
time limit. The second metric is Completion Throughput,
which is defined as the ratio between the target’s index of
difficulty (ID) and target acquisition time. The ID is computed
with the Shannon formulation as log2(D/W+1) where D and
W are target distance and target width, respectively [63].
We considered two components of the acquisition process
for the last two metrics. The First Touch Throughput metric
focuses on the initial reach, which is defined as the ratio
between the target’s ID and the time to first enter the target
area. The Adjustment Time focuses on the corrective actions
if a single attempt did not acquire the target, which is defined
as the time between the first entry of target to trial completion.
Note that the last three metrics were all evaluated with only
successful trials.

For statistical analysis, we first quantified block-to-block
learning within the adult and child groups with the Completion
Throughput metric using two-way repeated measure ANOVA
(3 Gains × 6 blocks), followed by Helmert contrast. Based
on the result of this analysis, we grouped trials into early
and late stages (first and second three blocks for each gain,
respectively). We considered the performance during the late
stage to be relatively stable and averaged the blocks for
subsequent comparison between adults and children. Mixed
two-way ANOVA (2 Age × 3 Gain) was used for these
comparisons followed by post-hoc t-tests with Bonferroni
corrections. Lastly, we assessed the age dependency in the
children group using correlation analysis.

III. RESULTS

A. Experiment 1: Number of Highly Independent
Movements

In the first experiment, participants performed 16 different
types of hand/wrist movements (Table I). We first quantified
the accuracy of an offline SVM-based classifier to assess the
participants’ ability to produce distinguishable EMG patterns.
With all movement types, the classification accuracy was
significantly higher in adults (59.2±7.3%) than in children

Fig. 2. Offline classification of movement types. A. Classification
accuracy following iterative elimination process. The horizontal dashed
line represents 90% accuracy. B. Comparing number of highly indepen-
dent movements between children and adults. Black dots are individual
samples. C. Effect of age on highly independent movements in children.
The solid and dashed lines are linear regression and its 95% confidence
interval.

(38.6±7.9%; p<0.001). As we iteratively eliminated move-
ment types with low accuracy, the classification accuracy in
the adult group remained to be better than the child group
(Fig. 2A).

The number of highly independent movements, defined as
the subset of movement types that affords >90% classification
accuracy, was significantly larger in adults (8.7±1.8) than in
children (5.0±3.5). This was confirmed by the Mann-Whitney
U Test (p = 0.044; Fig. 2B). Furthermore, we also examined
the age dependency of this metric in children. Spearman’s
correlation analysis revealed a significant positive correlation
(ρ = 0.736, p = 0.045; Fig. 2C).

B. Experiment 1: Dimensionality of the sEMG Signals

We also examined the dimensionality of the sEMG sig-
nals created by the repetition of 16 movements. While the
classification approach in the previous section quantifies the
number of discrete EMG patterns one can produce, the NMF
approach identifies the number of major directions of variation
from the collected sEMG data. We found no difference in the
dimensionality estimation between children (4.4 ± 0.5) and
adults (4.0 ± 0.9). This suggests that four major synergies
can explain ∼95% of the total variance of the muscle activity
generated to perform the 16 hand/wrist movements. We also
did not find age to correlate with the dimensionality in
children.

To further explore the distribution of the signal variation,
we performed 4-dimensional NMF with all participants of each
age group. The resulting channel weight vectors were pooled
within-group, and four clusters were subsequently defined
with the k-means method. Each cluster can be considered to
represent a major EMG co-variation pattern. It can be observed
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Fig. 3. Distribution of EMG signals across eight electrodes surrounding
forearm circumference. The concentric circles represent the value of
coefficients of eight electrode channels (E1 – E8), i.e., weighting in co-
variation patterns. Electrodes 1 and 5 were always placed at the ventral
side (mostly flexors), and electrodes 4 and 8 were always placed at the
dorsal side (mostly extensors). Each color represents the mean of a
cluster of the coefficient vectors extracted with four-dimensional NMF.

that the distributions of the estimated variance directions
around the circumference of the forearm were qualitatively
similar between children and adults, representing the bidirec-
tional activation of two major DoFs (Fig. 3). The orientation
difference may be caused by small differences in electrode
placements.

C. Experiment 2: Differences Between Children and
Adults in Real-Time Myoelectric Control

In the second experiment, participants controlled a cursor
to acquire targets in a 1-dimensional workspace. There were
three different visuomotor gain levels, with the highest one
moving the cursor twice as fast as the lowest one when the
same level of muscle contraction was produced. Each gain
level was used in six blocks of 120 trials. We first evaluated
whether participants learned to improve their performance,
i.e., increasing trial Completion Throughput, as more trials
of the same gain were repeated. Interestingly, we found
that adults improved their performance across blocks, much
more than children did. Specifically, the adults increased their
throughput by approximately 15% comparing the last and
first blocks, whereas the child participants only increased by
approximately 7% (Fig. 4). This was confirmed by statistical
analysis. For the adult group, two-way ANOVA revealed a
significant Block effect (p = 0.001), but no significant Gain
effect nor interactions. The Helmert contrast suggested that
the improvement reached a plateau after the third block.
In contrast, no significant effect was found in children, and
the contrast suggested that there was no improvement beyond
the first block. Based on these results, we decided to focus
on the comparison between adults and children during the last
three blocks of trials by taking the average of these blocks.

Overall, children failed much more than adults (Fig. 5A),
but the failure rates were similar across three gain levels. This
was confirmed by a significant Group effect (p = 0.007) and
no Gain effect or interactions when comparing Failure Rate.
The large variation in the children group was mainly caused by
one participant (7 years old boy), but excluding this participant
does not change the results. Within successful trials, children
took more time to acquire the targets, leading to smaller

Fig. 4. Block-to-block learning of myoelectric control. Three gain
conditions were averaged for each participant. The asterisks represent
significant Helmert contrast (p < 0.05) comparing the corresponding
block to the average of following blocks.

Completion Throughput than adults had (Fig. 5B). Statistical
analysis revealed significant effects of both Gain and Group
(p = 0.008 and p = 0.001, respectively) with no interaction.
Post hoc paired t-tests found significant differences between
Low gain and Medium gain as well as High gain levels
(p < 0.001 and p = 0.011, respectively), but Medium and High
gains were indifferent. A close examination of the individuals
revealed that 5 adults and 4 children had the best performance
with the High gain, whereas 3 adults and 5 children did the
best with the Medium gain.

We break down the target acquisition process into the initial
reach to the target and adjustment time. The First Touch
Throughput was similar between children and adults, both
showing faster movement with higher gains (Fig. 5C). Statisti-
cal analysis confirmed this observation with only a significant
effect of Gain (p = 0.002), not Group nor interaction. Post
hoc comparisons revealed that Low gain was significantly
slower than both Medium and High gains (p < 0.001). For
adjustment time, children took much longer to correct than
adults did if they were not able to stay in the target area after
first entry (Fig. 5D). Two-way ANOVA revealed a significant
interaction (p = 0.047). Post hoc comparisons showed that
adults had significantly smaller adjustment time than children
(p < 0.001). Moreover, the gain levels had different effects.
Specifically, adults had the longest adjustment time for High
gain (p < 0.003) and the other two were not different.
In contrast, children had the smallest adjustment time for Low
gain (p < 0.001), and the Medium and High gains were not
different.

D. Experiment 2: Age-Related Effect on Real-Time
Myoelectric Control in Children

We evaluated the extent to which age may predict chil-
dren’s ability to use proportional myoelectric interfaces. For
Completion Throughput, all three visuomotor gain levels were
positively correlated with age (Fig. 6A). Pearson’s correlation
coefficients for Low, Medium, and High gains were 0.790
0.848, and 0.790 (p = 0.004, 0.001, 0.004), respectively.
This indicates that children could attain target acquisition
goals faster as they grow older. We found that age does not
predict the First Touch Throughput, instead, the improvement
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Fig. 5. Capability of Myoelectric control per visuomotor gain level during the last three blocks of trials (mean ± S.D.). A. Completion rate. B.
Completion throughput. C. First touch throughput. D. Adjustment time. The blue bars at the top indicate significant differences.

Fig. 6. Age related effect on real-time myoelectric control in children.
A. Completion Throughput. B. Adjustment Time. The dashed lines
represent significant correlation.

was mainly due to the greater ability to adjust after missing
the targets. For Adjustment Time, we found that Low and
Medium gains showed significant negative correlations with
age (Fig. 6B), with Pearson’s correlation coefficients being
−0.704 and −0.745 (p = 0.016 and 0.009), respectively.
No significant correlation was found for the High gain level.

IV. DISCUSSION

The present study compared typically developing children
with young adults regarding the ability to use myoelectric
interfaces. The first experiment focused on the extent to which
participants can produce different EMG patterns with their
forearm muscles, whereas the second experiment focused
on participants’ ability to use muscle contraction as control
signals in a real-time visuomotor task. The results generally
supported our hypothesis that children have less myoelectric
control capability than adults, and the capability improved as
their neuromuscular systems develop with age. We discuss
our findings with respect to the broad literature about motor
control in children and clinical relevance below.

A. Generation of EMG Patterns: Variance and
Consistency

In the first experiment, we found that the classification
accuracy of different hand and/or wrist movement was lower
for children in general and improved with age (Fig. 2). In con-
trast, the dimensionality analysis suggests that more than 95%
variance of the sEMG signals associated with these movements
can be explained similarly in both children and adults with

four major co-variation patterns. These two results indicate
that the main cause underlying the less accurate classification
with children was their lack of consistency for reproducing the
same movement type, rather than not being able to produce
different movement types. This is consistent with previous
research that demonstrated higher movement variability in
children and that the variability reduces with age [42], [46],
[66], [67]. There are two potential causes of high movement
variability in children. First, physiological constraints may
arise from the developing neuromotor system. For instance,
the nervous system is inherently noisy [68], and the signal-
to-noise ratio could be lower in children due to immaturity
in neural transmission, population coding, or inexperience in
redundancy resolution [69]. Furthermore, children have limited
capability to maintain attention [50]–[52], thus they may be
more likely to be distracted in our experiments even though
we tried to help them keep the focus on the task by giving
breaks and verbal encouragement.

Another theory argues that movement variability may reflect
a process implemented by the nervous system to explore dif-
ferent motor actions to benefit motor learning [70]. A related
theoretical framework for motor development is the Neuronal
Group Selection Theory (NGST) [71]–[73], which proposes
that motor development reorganizes and selects variable neu-
ronal repertories through exposure to various tasks and envi-
ronments. This theory has been used to explain the corti-
cal activities in children with congenital upper limb deficits
[74]. Therefore, it is possible that children may rely on
this exploration process more than adults as they need to
adapt to the constantly changing body mass and dimension.
Although the present study cannot distinguish the two causes
of motor variability (i.e., inherent constraints or intentional
exploration) in our task, both mechanisms could likely be
at play. It has been shown that movement variability could
be reduced after extensive practice of novel motor skills in
children, suggesting a task-specific reduction of intentional
variability [69]. To quantify the contribution of the above
two mechanisms of variability, future studies will examine the
extent to which classification accuracy can be improved after
practicing different movement types.

B. Real-Time Myoelectric Control in Children

In the second experiment, we investigated children’s ability,
in comparison to adults, to control a simple 1-DoF cursor with
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a proportional myoelectric interface. As expected, children
performed worse with more failures and longer time to acquire
the targets. Surprisingly, we found that children benefited
much less from consecutive practice than adults, showing
little overall improvements across blocks (Fig. 4). Previous
research has demonstrated that children could significantly
improve movement speed in simple drawing and reaching
tasks after repetitive practice [43], [75]. Moreover, children
can also learn some complex novel motor skills at similar
rates at adults, such as adapting to force field [69] and
visuomotor rotation [76], as well as acquiring visuomotor
mapping between torso movement and a 2-DoF cursor [45].
We speculate that the lack of significant learning effect in our
task was caused by one unique feature of myoelectric con-
trol, namely the velocity-based EMG-to-movement mapping
which is commonly used in myoelectric control of prostheses.
Regardless of the task complexity, previous research of motor
control in children mostly used tasks that are operated by
natural movement, where the state of the muscles can be
mapped to a single location in space. In contrast, velocity-
based mapping in myoelectric control has inherent position
ambiguity, i.e., the end-effect can be at any location for the
same muscle state. Therefore, velocity-based control could
be particularly challenging for the children’s nervous systems
to make predictions about the consequences of their actions,
an ability that is not fully developed in children compared
to adults [43]. Consequently, children may need significantly
more practice to master velocity-based myoelectric control.

A closer examination of the target acquisition behavior
revealed that children and adults could be equally fast as to
generate the initial movement to move the cursor towards the
target (Fig. 5C). The main problem children faced was the
lesser ability to make corrections if they could not stay in
the target after first entry (Fig. 5D), and older children were
better than younger ones (Fig. 6B). In a novel visuomotor
task like ours, it is critically important to predict the cursor
movement and start to reduce muscle contraction level to
prevent overshooting the target. It has been documented that
younger children may rely more on feedback, particularly the
slow visual feedback loop, than feedforward motor planning to
in visuomotor tasks [43]. As a result, younger children could
exhibit a more separated sequence of submovements during
the corrective portion of goal-directed reaching tasks [77].
Therefore, our results are consistent with these studies, and
further suggest that children, especially the younger ones, are
inherently constrained by their neuromotor control capability
to support fine motor actions through myoelectric interfaces.

C. Clinical Implications

The main objective of the present study was to validate the
experimental protocol and provide baseline data from typically
developing children for future investigations in children with
upper limb loss. The motor development of the affected limb
in children with congenital limb reduction or early amputation
remains unknown. An animal study with cats showed that
early suppression of limb motor experience during the period
of motor development can lead to defective development of
the corticospinal tract and a prehension deficit in maturity

[78]. In humans, it has been shown that the threshold to acti-
vate muscle cortical representation via transcranial magnetic
stimulation was higher for the affected limb in adults with
congenital limb loss, showing an opposite hemispheric asym-
metry compared to traumatic amputees [16]. This indicates that
motor experience was important to reduce inter-hemisphere
inhibition during motor development, and may explain the
diminished ability of adults with congenital limb loss to use
classification-based myoelectric interfaces [15]. A recent study
comparing children with limb reduction and age-matched
typically developing children showed that they have similar
performance to use body-powered hand prostheses in gross
motor tasks (i.e., Box and Block Test). However, imaging
data acquired by functional near-infrared spectroscopy showed
distinct cortical activity patterns. Children with limb reduction
showed significant activation of the motor cortex ipsilateral to
the impaired limb, indicating a possible compensation to the
underdeveloped contralateral hemisphere [74]. These findings
suggest appropriate motor practice with the impaired limb in
developing children is critically important to the maturation
of the neuromotor control system to prepare for the use of
advanced myoelectric interfaces in adulthood. It is expected
that children without motor training would perform worse
in our experimental tasks than what we reported here with
typically developing children.

Our findings also have several other important clinical
implications. First, the offline analysis in the first experiment
suggested that regression-based controllers may be a better
option than classification-based ones for children. This is
because the relatively low classification accuracy and a small
number of independent movements diminish the advantage of
functional flexibility in classification-based interfaces. In con-
trast, regression-based interfaces could be more robust to
motor variability in children. Second, the visuomotor gain of
myoelectric interfaces should be carefully selected to match
the capability of the individual user because the optimal
gain could vary between users, and children may generally
prefer a smaller gain than adults. Lastly, given the challenge
for children to improve real-time myoelectric control, it is
important to develop training programs that are engaging to
enhance motor skill learning, which may be achieved through
virtual reality and gamification [79].

D. Limitations and Future Directions

The present study only used eight electrodes for recording.
This may be sufficient to measure from non-disabled indi-
viduals consistently, but it could be challenging to produce
comparable data from individuals with limb loss. Moreover,
the current setup may not be able to capture fine details of
the muscle activations (i.e., individual finger movement) that
could support higher classification accuracy and more DoFs.
In future studies with both individuals with limb loss and non-
disabled controls, we will use high-density EMG arrays to
provide better spatial resolution to quantify the myoelectric
control capability. Another methodological limitation is that
we did not quantitatively ensure that true wrist MVC was
performed during calibration. This could lead to unaccounted
variability in the visuomotor mapping for the target acquisition
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task. Furthermore, the present study focused on simple 1-DoF
real-time control. While the results provide important insights
into the fundamental neuromotor control capacity in children,
the real-world functional tasks often require the activation
of multiple DoFs (either sequentially or simultaneously) that
may have higher cognitive demand. In future studies, we will
extend our target acquisition experiment to multi-DoF space
to investigate the real-time myoelectric control capacity in
more complex tasks. Lastly, this study was designed to obtain
baseline measures of myoelectric control capabilities with
non-disabled children. In future studies that enroll children
with limb loss, we expect to see large deviations from our
baseline measures due to variations in the characteristics of
the patients (e.g., level and type of limb reduction).

V. CONCLUSION

To our best knowledge, the present study is the first to
quantify children’s myoelectric control capability. We found
that, similar to other motor skills, typically developing children
increase their myoelectric control as they grow older, and
their capability is limited by motor variability and reliance
on feedback control mechanisms. An important finding is
that myoelectric control, commonly based on mapping EMG
signals to the velocity of the end-effector, presents a major
challenge for children to improve over repetitive practice.
Overall, our results represent the initial step towards better
understanding of the neuromotor development in children with
limb loss.
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